Wigner function simulation of intrinsic oscillations, hysteresis, and bistability in resonant tunneling structures

نویسنده

  • Bryan A. Biegel
چکیده

Several interesting behaviors of resonant tunneling diodes (RTDs) are investigated through numerical simulation: high frequency self-oscillations, strong intrinsic hysteresis, and pronounced static bistability. Each of these behaviors has been observed experimentally in RTDs, but the measured effects have been slower (oscillations), weaker (hysteresis, bistability), or required external inductance to occur (oscillations, hysteresis). These simulations indicate that the effects occur strongly and intrinsically in an RTD when a narrow energy band in the emitter aligns just below a quantized energy state in the quantum well. Quantum system models and available computation power have only recently developed to a point where the necessary physical effects (inelastic scattering, self-consistency, and transient operation) can be properly included to simulate these behaviors in a quantum device. A 1-D Wigner function model is used for transient, self-consistent RTD simulations including inelastic scattering. 1-D transfer-matrix calculations are used to locate quantized energy levels. The physics behind the intrinsic oscillations, hysteresis, and bistability are described for the simulated RTD. Simulation results are also presented for double-well RTD structures in an attempt to enhance these effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonant tunneling and intrinsic bistability in twisted graphene structures

We predict that vertical transport in heterostructures formed by twisted graphene layers can exhibit a unique bistability mechanism. Intrinsically bistable I -V characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and...

متن کامل

S - shaped current bistability in a bipolar resonant tunneling diode

The bipolar tunneling transport through p—i—n double barrier structures has been studied by means of simultaneous electrical transport measurements and electroluminescence spectroscopy. An “inverted” hysteresis loop is observed at the onset of the first electronic resonance in the current—voltage characteristics with an electrical ON/OFF ratio of more than two orders of magnitude. Relating the ...

متن کامل

Applied Bias Slewing in Transient Wigner Function Simulation of Resonant Tunneling Diodes

The Wigner function formulation of quantum mechanics has shown much promise as a basis for accurately modeling quantum electronic devices, especially under transient conditions. In this work, we demonstrate the importance of using a finite applied bias slew rate (as opposed to instantaneous switching) to better approximate experimental device conditions, and thus to produce more accurate transi...

متن کامل

Self-sustained magnetoelectric oscillations in magnetic resonant tunneling structures.

The dynamic interplay of transport, electrostatic, and magnetic effects in the resonant tunneling through ferromagnetic quantum wells is theoretically investigated. It is shown that the carrier-mediated magnetic order in the ferromagnetic region not only induces, but also takes part in intrinsic, robust, and sustainable high-frequency current oscillations over a large window of nominally steady...

متن کامل

Quantitative simulation of a resonant tunneling diode

Related Articles Ultra-thin titanium oxide Appl. Phys. Lett. 101, 083113 (2012) Influence of doping on the electronic transport in GaSb/InAs(Sb) nanowire tunnel devices Appl. Phys. Lett. 101, 043508 (2012) Simulation of trap-assisted tunneling effect on characteristics of gallium nitride diodes J. Appl. Phys. 111, 123115 (2012) Tuning of terahertz intrinsic oscillations in asymmetric triple-bar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007